Establishment of an intragastric challenge model for wild-type Shigella dysenteriae-1

Dr. Dilara Islam, PhD
Department of Enteric Diseases
Armed Forces Research Institute of Medical Sciences
Bangkok, Thailand
AFRIMS Mission

Medical research, disease surveillance, and development & evaluation of medical products for tropical infectious diseases
Shigellosis

- Shigellosis is endemic in developing countries
- Shigella dysenteriae-1 (Shiga bacillus), is the most virulent of the four serogroups of Shigella
- Shigella dysenteriae-1 is the cause of epidemic dysentery
- Shigella dysenteriae-1 cases in developing country/refugee populations are often fatal
- Due to the presence of the potent Shiga toxin, S. dysenteriae-1 infection complications include hemolytic-uremic syndrome, seizures, sensis, rectal prolapse, and toxic megacolon
S. dysenteriae-1 Vaccine

• An effective S. dysenteriae-1 vaccine could:
 – Prevent outbreaks in refugee and disaster settings from contaminated food and water
 – Preclude the need for new antimicrobials to treat multi-drug resistant species of S. dysenteriae-1

• WRSd1 is an oral live attenuated vaccine
 – Derived from S. dysenteriae-1 parent strain 1617
 – Genes necessary for inter- and intracellular spread virG(icsA) and for Shiga toxin (stx) are deleted
 – Has significant side effects in early human trials making further development unlikely
Animal Models

• Animal model required for the required pre-clinical evaluation of the vaccine candidates
• Rhesus monkeys and other primates are naturally susceptible to intestinal infections with Shigella
• Shigellosis in non-human primates closely mimics the disease and immune response seen in humans
• Availability of multiple biological samples (blood, colonic mucosal tissue, colonic lavage, and stool) helpful
Objectives

• Determine optimal dose of S. dysenteriae-1 1617 strain required to establish dysentery in the nonhuman primates (rhesus monkey)
• Document reactogenicity and immune responses elicited by the optimal dose of S. dysenteriae-1 1617 strain
• Demonstrate that previous infection with 1617 strain can protect monkeys against subsequent challenge with the same organism
Study Design

- 20 monkeys (4 groups of 5 each) assigned to one of four groups.
- Optimal challenge dose will reproducibly produce dysentery in 3-4 monkeys of 5
- Escalating doses - 2×10^8 cfu (group-1 monkeys), 2×10^9 cfu (group-2 monkeys), 2×10^{10} cfu (group-3 monkeys) with repeat at optimal dose
• Optimal dose monkeys are re-challenged with the same dose after one month to evaluate any protectivity elicited by the first challenge.
• At the same time group-4 monkeys are challenged with the same dose preparation.
• Group-4 monkeys will be re-challenged after one month of challenge (similar to optimal dose monkeys).
• Total of 10 monkeys are challenged with the optimal dose and re-challenged after one month to evaluate reproducibility & protection.
Preliminary Results

<table>
<thead>
<tr>
<th>Group</th>
<th>Dose (cfu)</th>
<th>Significant Clinical Signs (5 monkeys in each group)</th>
<th>Change in CBC</th>
<th>Histopathology with Acute inflammation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2×10^8</td>
<td>None with dysentery 4 with transient anorexia</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2×10^9</td>
<td>2 with dysentery 4 with transient anorexia 4 with reduced activity</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2×10^{10}</td>
<td>2 with dysentery 4 with transient anorexia 3 with reduced activity</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2×10^{10} (re-challenge)</td>
<td>2 monkeys with soft stool probably will get dysentery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2×10^{10}</td>
<td>1 monkey died 4 monkeys developed dysentery</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dysentery = Loose or watery stool with blood and mucus
CBC = complete blood cell count; Change in CBC = Neutrophilia with left shift and toxic change
** result until day-3 post challenge
Colonic biopsy with normal features

(before challenge)

(3 days post challenge)

Acute neutrophilic colitis (moderate) with crypt abscess (increased numbers of neutrophils, decreased numbers of goblet cells and an increase in mitotic figures)
One monkey of group-4 (challenged with 2×10^{10} cfu) died in the evening of challenge day.

Only blood & mucus as feces
Inflamed intestine with bloody fluid in ileum (possibly effect of Shiga toxin)
Plasma Antibody Responses

<table>
<thead>
<tr>
<th>Group</th>
<th>Dose (cfu)</th>
<th>IgA antibody titers</th>
<th>IgG antibody titers</th>
<th>IgM antibody titers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LPS Invaplex</td>
<td>LPS Invaplex</td>
<td>LPS Invaplex</td>
</tr>
<tr>
<td>1</td>
<td>2×10^8</td>
<td>5 4</td>
<td>8 67</td>
<td>8 5</td>
</tr>
<tr>
<td>2</td>
<td>2×10^9</td>
<td>7 6</td>
<td>90 192</td>
<td>14 24</td>
</tr>
<tr>
<td>3</td>
<td>2×10^{10}</td>
<td>5 9</td>
<td>43 368</td>
<td>4 8</td>
</tr>
</tbody>
</table>

Fold increase (average of 5 monkeys) of antibody titers against *Shigella* antigens in plasma samples from convalescent phase compared to baseline plasma samples.
Fecal Cytokine Levels

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>Study Day</th>
<th>Group-1</th>
<th>Group-2</th>
<th>Group-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1 beta</td>
<td>Day-0</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>Day-2</td>
<td>19 (43)</td>
<td>111 (165)</td>
<td>3 (8)</td>
</tr>
<tr>
<td></td>
<td>Day-5</td>
<td>129 (259)</td>
<td>195 (303)</td>
<td>48 (82)</td>
</tr>
<tr>
<td></td>
<td>Day-7</td>
<td>111 (194)</td>
<td>85 (88)</td>
<td>64 (84)</td>
</tr>
<tr>
<td>IL-6</td>
<td>Day-0</td>
<td>2 (2)</td>
<td>2 (1)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>Day-2</td>
<td>2 (1)</td>
<td>72 (9157)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>Day-5</td>
<td>29 (59)</td>
<td>162 (257)</td>
<td>32 (67)</td>
</tr>
<tr>
<td></td>
<td>Day-7</td>
<td>5 (11)</td>
<td>27 (60)</td>
<td>227 (436)</td>
</tr>
<tr>
<td>IL-8</td>
<td>Day-0</td>
<td>1 (1)</td>
<td>4 (9)</td>
<td>7 (7)</td>
</tr>
<tr>
<td></td>
<td>Day-2</td>
<td>13 (29)</td>
<td>164 (260)</td>
<td>11 (19)</td>
</tr>
<tr>
<td></td>
<td>Day-5</td>
<td>449 (936)</td>
<td>1455 (1842)</td>
<td>440 (910)</td>
</tr>
<tr>
<td></td>
<td>Day-7</td>
<td>186 (378)</td>
<td>132 (226)</td>
<td>787 (1445)</td>
</tr>
</tbody>
</table>
Fecal IgA Responses

Fecal IgA titers against *S. dysenteriae* 1 LPS
Pending Results

- Analysis of antibody secreting cells by ELISPOT assay
- Analysis of expression of different cytokines in gut tissue samples at m-RNA levels by Real-Time PCR assay
- Immunohistochemical staining of frozen gut tissue sections for: i) identification of recruitment of different immune cells in gut tissue samples and ii) infiltration of other inflammatory mediators (myeloperoxidase and lactoferrin)
Future Plans

• Complete lab assays on samples from current studies
• Evaluate candidate S. dysenteriae-1 vaccines as available
• Compare candidate S. dysenteriae-1 vaccines to existing vaccine WRSd1
Acknowledgements

• Funding by DMID, NIAID
• Collaborators
 – Department of Enteric Infections
 Walter Reed Army Institute of Research
 Silver Spring, MD, USA
 – Department of Veterinary Medicine
 Armed Forces Research Institute of
 Medical Sciences, Bangkok, Thailand